323 research outputs found

    Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-10-01, epub 2021-10-21Publication status: PublishedHere we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers. Here, we achieve high quality energy-dispersive tomograms from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. This exploits the spatial smoothness and inter-channel structural correlation in the spectral domain using two carefully chosen regularisation terms. For a multi-phase phantom, a reduction in scan time of 36 times is demonstrated. Spectral analysis methods including K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single (iodine)-stained biological sample, where low chemical concentration and inhomogeneous distribution can affect soft tissue segmentation and visualisation. The reconstruction algorithms are available through the open-source Core Imaging Library. Taken together, these tools offer new capabilities for visualisation and elemental mapping, with promising applications for multiply-stained biological specimens

    Crystalline phase discriminating neutron tomography using advanced reconstruction methods

    Get PDF
    Time-of-flight neutron imaging offers complementary attenuation contrast to X-ray computed tomography (CT), coupled with the ability to extract additional information from the variation in attenuation as a function of neutron energy (time of flight) at every point (voxel) in the image. In particular Bragg edge positions provide crystallographic information and therefore enable the identification of crystalline phases directly. Here we demonstrate Bragg edge tomography with high spatial and spectral resolution. We propose a new iterative tomographic reconstruction method with a tailored regularisation term to achieve high quality reconstruction from low-count data, where conventional filtered back-projection (FBP) fails. The regularisation acts in a separated mode for spatial and spectral dimensions and favours characteristic piece-wise constant and piece-wise smooth behaviour in the respective dimensions. The proposed method is compared against FBP and a state-of-the-art regulariser for multi-channel tomography on a multi-material phantom. The proposed new regulariser which accommodates specific image properties outperforms both conventional and state-of-the-art methods and therefore facilitates Bragg edge fitting at the voxel level. The proposed method requires significantly shorter exposure to retrieve features of interest. This in turn facilitates more efficient usage of expensive neutron beamline time and enables the full utilisation of state-of-the-art high resolution detectors

    Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal–Organic Framework

    Get PDF
    Efficient charge transfer across metal–organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal–organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal–organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal–organic interfaces for organic thin-film devices are discussed

    Core Imaging Library - Part II:multichannel reconstruction for dynamic and spectral tomography

    Get PDF
    The newly developed core imaging library (CIL) is a flexible plug and play library for tomographic imaging with a specific focus on iterative reconstruction. CIL provides building blocks for tailored regularized reconstruction algorithms and explicitly supports multichannel tomographic data. In the first part of this two-part publication, we introduced the fundamentals of CIL. This paper focuses on applications of CIL for multichannel data, e.g. dynamic and spectral. We formalize different optimization problems for colour processing, dynamic and hyperspectral tomography and demonstrate CIL’s capabilities for designing state-of-the-art reconstruction methods through case studies and code snapshots

    Alkali doping leads to charge-transfer salt formation in a two-dimensional metal–organic framework

    Get PDF
    Efficient charge transfer across metal–organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal–organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal–organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal–organic interfaces for organic thin-film devices are discussed

    High-energy synchrotron X-ray tomography coupled with digital image correlation highlights likely failure points inside ITER toroidal field conductors

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-02-01, accepted 2021-10-22, registration 2021-11-09, pub-electronic 2021-11-30, online 2021-11-30, collection 2021-12Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/M010619/1Abstract: Two sections of heat-treated (HT) and non-heat-treated (NHT) Cable-in-Conduit Conductor (CICC) of a design similar to the ITER tokomak have been imaged using very high energy X-ray tomography at the ESRF beamline ID19. The sample images were collected at four temperatures down to 77 K. These results showed a greater degree of movement, bundle distortion and touching strands in the NHT sample. The HT sample showed non-linear movements with temperature especially close to 77 K; increasing non-circularity of the superconducting fibre bundles towards the periphery of the CICC, and touching bundles throughout the CICC. The images have highlighted where future design might improve potential weakness, in particular at the outer perimeters of the conductor and the individual sub-cable, ‘petal’ wraps

    The implications of direct participation for organizational commitment, job satisfaction and affective psychological well-being: a longitudinal analysis

    Get PDF
    The paper examines the implications of direct participation for employees’ organizational commitment, job satisfaction and affective psychological well-being. It focuses on both task discretion and organisational participation. Applying fixed effect models to nationally representative longitudinal data, the study provides a more rigorous assessment of the conflicting claims for the effects of participation which have hitherto been based primarily on cross-sectional evidence. Further, it tests a range of mechanisms by which direct participation leads to improved employee outcomes. Contrary to the critical literature, it shows that even after controlling for unobserved individual heterogeneity, both forms of direct participation have positive effects for employees’ organizational commitment and well-being. The effects of task discretion are primarily direct, reflecting the intrinsic importance of personal control over the job task; in contrast, those of organizational participation derive to a greater extent from its indirect effect on the quality of working conditions

    Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig

    Full text link
    The goal of this study was to correlate synaptic ultrastructure with transmitter specificity and function in the lateral superior olive (LSO), a nucleus that is thought to play a major role in sound localization. This was accomplished by means of postembedding immunogold immunocytochemistry. Four classes of synaptic terminals were identified in the LSO. They were distinguishable from one another both morphologically and on the basis of their different patterns of immunolabeling for glutamate, glycine, and Γ-aminobutyric acid (GABA). The highest level of glutamate immunoreactivity was found in terminals that contained round vesicles (R) and formed synaptic contacts with asymmetric synaptic junctions. Round-vesicle terminals predominated on small caliber dendrites by a ratio of at least 2:1 over the other classes combined. The thinnest dendrites were typically contacted by R terminals only. The ratio of R terminals to the other types decreased as the caliber of the dendritic profiles they apposed increased so that on the soma, R terminals were outnumbered by at least 2:1 by the other types. Terminals containing flattened vesicles (F) exhibited intense immunoreactivity for both glycine and glutamate, although the glutamate immunolabeling was not as high as that in the R terminals. Flattened-vesicle terminals formed symmetric synaptic contacts with their targets and their distribution was the reverse of that described for R terminals; i.e., they were most abundant on LSO perikarya and fewest on small caliber dendrites. Two terminal types, both containing pleomorphic vesicles and forming symmetric synaptic junctions, were found in far fewer numbers. One group contained large pleomorphic vesicles (LP) and was immunoreactive for both glycine and GABA. The other group contained small pleomorphic vesicles (SP) along with a few dense-core vesicles and labeled for GABA only. The LP terminals were preferentially distributed on somata and large–caliber dendrites, while the SP terminals most often contacted smaller dendrites. Previous work suggests that a large percentage of the R terminals arise from spherical cells in the ipsilateral cochlear nucleus and are excitatory in action. This pathway may use glutamate as a transmitter. Many of the F terminals are thought to originate from the ipsilateral medial nucleus of the trapezoid body and appear to be the inhibitory (glycinergic) terminals from a pathway that originates from the contralateral ear. The origins and functions of LP and SP terminals are unknown, but a few possibilities are discussed along with the significance of cocontainment of neuroactive substances in specific terminal types. © 1992 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50052/1/903230302_ftp.pd

    Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK

    Get PDF
    Background: There is raised risk of mortality following unemployment, and reviews have consistently found worse psychological health among the unemployed. Inflammation is increasingly implicated as a mediating factor relating stress to physical disease and is strongly linked to depression. Inflammation may, therefore, be implicated in processes associated with excess mortality and morbidity during unemployment. This study examined associations of unemployment with inflammatory markers among working-age men and women from England and Scotland. Methods: Cross-sectional analyses using data from the Health Survey for England and the Scottish Health Survey collected between 1998 and 2010. Systemic inflammation was indexed by serum concentrations of C reactive protein (CRP) and fibrinogen, and compared between participants currently employed/self-employed, currently unemployed and other groups. Results: CRP, fibrinogen and odds of CRP >3 mg/L were all significantly raised for the unemployed, as compared to the employed participants (eg, OR for CRP >3 mg/L=1.43, CI 1.15 to 1.78 N=23 025), following adjustment for age, gender, occupational social class, housing tenure, smoking, alcohol consumption, body mass index, long-term illness and depressive/anxiety symptoms. Strengths of associations varied considerably by both age and country/region, with effects mainly driven by participants aged ≄48 and participants from Scotland, which had comparatively high unemployment during this time. Conclusions: Current unemployment is associated with elevated inflammatory markers using data from two large-scale, nationally representative UK studies. Effect modification by age suggests inflammation may be particularly involved in processes leading to ill-health among the older unemployed. Country/regional effects may suggest the relationship of unemployment with inflammation is strongly influenced by contextual factors, and/or reflect life course accumulation processes
    • 

    corecore